### **Transformers** More than meets the eye!

**Kristen McIntyre K6WX** 

### Transformers

- Not the toy that my son was so fond of
- They have some similarities
  - something is 'transformed'
- Easier than transforming that toy
  - my son made me do that
- Underrated device



### Transformers are sad

- Short shrift in texts
  - reduced to turns ratio
- Magnetic material properties
  - under explored or ignored
- Uninteresting because passive
- Seen as 'old' technology



# What is 'transformed'?

- Conserve energy
- Change V/I relationship
- Change Z<sub>in</sub>/Z<sub>out</sub> relationship
- Even regulate voltage!
- Teach us to count
- Make us stronger
  - lift that tube amp!



### Let's explore

- How they work
- How to make them
- Parameters and construction
- What they are good for
- Unusual manifestations







#### heory Maxwell, as always

- Faraday's Law of Induction
  - Maxwell-Faraday equation
- Links to Kirchhoff's Voltage Law
- Magnetic flux
  - time rate of change
- Lenz's law (equal and opposite)
- Basis of all electro-mechanical transformations too



By Geek3 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10618762



### **Mechanical Energy** Transform to Electrical Energy

- Loop of wire
- Magnet
- Requires  $\frac{d\Phi_m}{dt}$  (a.k.a. flux)
- Motion + Force
  - 'Work' (work-energy theorem)
  - flux through a surface



### Take away the magnet

- How else can we get a changing B field?
- Permanent magnets are inconvenient
  - limited field strength
  - but we could rotate them
- Solution: dynamotor!





### What creates a B field? More seriously, though

- Permanent magnet
  - aligned dipoles
  - tiny, tiny currents
- Ampere's Law
  - create magnetic flux
  - make it change with time
- Create a nice concentrated field
  - use a solenoid (Maxwell)



Curren



Current (density)

$$\nabla \cdot \overrightarrow{H} = J + \frac{\partial \overrightarrow{D}}{\partial t}$$

$$\cdot dl = I + \frac{d}{dt} \oint \overrightarrow{D} \cdot dA$$

$$=\frac{\mu_0}{4\pi}\frac{2\pi R^2 I}{\left(R^2+z^2\right)^{\frac{3}{2}}}$$



R: radius

z: distance in axial direction

**Biot-Savart for solenoid** 

### Use another coil! Bright idea

- Make a current flow
  - creates a B field from one
- Must be close
  - capture that magnetic flux  $\Phi_m$
- Should be strong
  - we can manipulate this
- What's missing?





### Changing flux EMF is a misleading name

- Field must change with time
- Remember Maxwell
  - Faraday's Induction Law
- EMF is needed to do work
  - needs electric potential
  - not just current / B field
  - work done on charges  $\overrightarrow{F} \cdot \overrightarrow{d} = W$
- This is why DC doesn't work with a transformer



#### Bar magnet does work: $\overrightarrow{F} \cdot \overrightarrow{d} = W$

$$\mathscr{E}_{C} = \oint_{C} \vec{E} \cdot dL = -\int_{A} \frac{\partial \vec{B}}{\partial t} \cdot dA$$
$$= -\frac{d}{dt} \oint_{C} \mathscr{A} \cdot dl = -\frac{d\Phi_{m}}{dt}$$

### Kirchhoff's 'Laws' Diversion - Current

- Current Law is straightforward
- Energy is conserved
- Charge is conserved
  - assume uniform distribution

• 
$$I = \frac{dq}{dt}$$

- current = time varying charge
- Uniform distribution breaks for AC



Wikipedia: KCL.png: Pflodo derivative work: M0tty (talk) - KCL.png



### Kirchhoff's 'Laws' **Diversion - Voltage**

**Based on Electromotive Force** 

• EMF or  $\mathscr{E}$ 

• 
$$\mathscr{E} = \oint_C \overrightarrow{E} \cdot dL = -\int_A \frac{\partial \overrightarrow{B}}{\partial t} \cdot dA$$

• Assume 
$$\frac{\partial \overrightarrow{B}}{\partial t} = 0$$

so breaks for AC



By Kwinkunks - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11056469

### Kirchhoff's 'Laws'

- Like Ohm's Law, not laws at all
- Valid only for some conditions
- Break for AC / RF
- Still useful for quasi-static calculations
- Not useful for transformers
  - How they break is what matters!



### What about that B field? Kind of leaky

- Want to keep all of the flux
- Pass the flux through the coil center
- Careful positioning
  - still fields leak :(
- Can we direct the field lines?
  - change material properties



## $\overrightarrow{B}$ vs $\overrightarrow{H}$ in the world

- $\overrightarrow{H}$  is the magnetic field strength
  - intensity independent of media
- $\overrightarrow{B}$  is the magnetic flux density
  - intensity mediated by media
- In a vacuum  $\overrightarrow{B} = \mu_0 \overrightarrow{H}$ 
  - $\mu_0$  means for a vacuum
- We can change  $\mu$  and change  $\overrightarrow{B}$







### **Materials Science** Try something with big $\mu$

- Metal; maybe Iron!
- Problem iron
  - conductive, magnetizable
  - iron is less conductive
  - eddy currents
  - loss -> heat
- Solution iron
  - slice it thinly to minimize



**Iron Core Transformer** 



### **Okay, but not great** What else can we use?

- Take the slicing further
- Embed iron oxide in ceramic
  - non-conductive
  - low coercivity
  - tune the material for high  $\mu$
- We call this material 'ferrite'













### What matters **Material characteristics**

- Linearity
  - does  $\mu$  change with H field
- Losses
  - hysteresis
- Frequency response
  - both might change
- Nothing is ideal





Ferrite 43 material 50 Ohm Magnetizing Admittance Loss





### Parasitic Capacitance

- Each wire in a coil has charge
- Interaction of E fields
  - capacitance
  - can cause resonance
  - can limit performance
- Ways to minimize
  - winding methods



## Coupling

- Coupling coefficient: k
  - how much flux is captured
  - ratio of OC voltage measured to ideal coupling (turns ratio)
- Defines how well power moves through the magnetic field
  - to the other coil of wire

Flux linkage 
$$\lambda = \int_{S} \overrightarrow{B} \cdot d\overrightarrow{S}$$

• for a coil:  $\Phi_m$ 

Mutual Inductance: M



$$\frac{V_2}{V_1} = \sqrt{\frac{L_2}{L_1}}$$
$$M = k\sqrt{L_1L_2}$$
$$\frac{V_1}{V_2} \text{(open circuit)} = \frac{M}{L_1}$$

### Mutual Inductance

- Change in current in one inductor -> voltage in other
- Uses the coupling coefficient k
- Another measure of coupling efficiency
- Extension of inductor V/I relationship
- Self Inductance conventional L
  - proportional to the energy in B



By Courtesy Spinningspark at Wikipedia, CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=44541453





### Magnetizing Current

- Losses in the core
  - hysteresis
  - eddy current ohmic
- Losses outside
  - leakage flux 0
  - wire ohmic
- Magnetizing current: core losses
  - maintains the mutual flux



By Fred the Oyster, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35262118



## Winding Styles

- Layer / cylindrical winding
- Helical / spiral
- Transposing conductors
- Basket winding
- Bifilar / N-filar
- Ayrton-Perry winding?
  - low parasitics









# **Bifilar Winding**<br/>Why?

- Two (or more) parallel windings
  - quadrifilar in pic
- Can increase energy storage
  - also in the E field
- Non-inductive WW resistors
- Can be used to block back EMF
  - short one winding
- No differential inductance
  - blocks common mode
  - choke balun



WB6ZQZ Triple Ratio Balun

### Core shapes



- Keep the flux inside the core
- Direct the flux to the windings
- Common geometries
  - square core
  - 'E' or 'El' core
  - toroidal
  - 'pot' core / enclosed core







### Now what? What is it for?



- Two coils of wire
  - mutually coupled
- Coupled by magnetic flux
  - this has possibilities
- Can vary that flux's effect
  - energy is conserved, though
- Can seemingly change ratios



#### **Power** Change I to V relationship

Power = Voltage x Current

• Energy = 
$$\int_{t_0}^{t_1} P(t) dt$$

- Energy is conserved
  - so power is too, sort of
  - $P_{in} = P_{out}$ ,  $V_{in} \cdot I_{in} = V_{out} \cdot I_{out}$
- Ratio of windings N
  - primary : secondary

Faraday's Induction Law  $V_p = -N_p \frac{d\Phi}{dt}$   $V_s = -N_s \frac{d\Phi}{dt}$ 

Combine: Assume the flux is equal







### Impedance Change I to V relationship

- Since power is 'conserved'
  - impedance follows similarly
- Use Ohm's Law
  - it's a 'Law'
  - assume linearity
- Crank the algebra
  - turns ratio squared

Vp = a $V_s$  $N_{\mathbf{c}}$  $V_{s}$  $I_{\mathcal{D}}$  $V = I \cdot Z$ n  $Z_{out}$ Lin Lin

### solate

- Transfer power
- No voltage relationship 0
  - how?
- Magnetic coupling ++
- Electric coupling --
- Frequency can't be too high
  - couples through E field

#### No Voltage Relationship



By BillC at the English-language Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27407689



#### Making them Smaller Why are switch mode PSs small?

- It's all in the magnetics
- Remember  $\frac{d\Phi}{dt}$  is what matters
- Increase the frequency (>10 kHz)
  - what increases?
- Better magnetic coupling
- Automatic adjustment
  - power factor correction
  - V & I in phase



#### 5V, 11A, 55VA



5V, 10A, 50VA



### Taps and Tricks

- Multiple input or output voltages
  - multiple currents too
- Was used to select 110V / 220V
- B+ and filament from same transformer
- Push-pull with one type of driver
  - polarity reversal!





### **Baluns and Ununs** Basically transformers

- So-called Voltage Baluns/Ununs
  - fancy name for transformer
  - isolation and impedance transformation
- So-called Current Baluns
  - different principle 1:1
  - uses transformer
  - voltage not 'severed'

#### Look familiar?







4:1 Guanella Current BALUN







### **'Current' Transformer**

- For measurement in power systems
- Basically sensing the changing magnetic flux
- Amprobe is a small-scale example
- Fast and loose terminology
  - not simply current-based



### **Ground Fault Interruptor**

- Clever device
- L + N -> net magnetic flux
  - equal & opposite = 0
  - not equal -> flux
- Sense flux with secondary winding
- Trigger the breaker if voltage present





### Variac (autotransformer)

- Primary and secondary common
- Wiper taps the secondary
  - called autotransformer
- Step down and up
- Most care about voltage
  - but V, I tradeoff still there
  - depends on wire and core





### Ferroresonant

- Look about the same
- Iron core partially saturated at no load
  - in nonlinear region
- Sometimes resonated with a capacitor
- Output much less sensitive to input variations
- Lovely buzzing sound!
  - lots of harmonics
  - can lead to EM interference



### **Core Memory**

- Ferrite beads (toroids)
- High coercivity
  - push to magnetization
- Delayed transformer effect
- Travel the hysteresis curve
  - writes go one way
  - reads the other

By Wdwdderivative work: User: Arnold Reinhold - Ringkernspeicher\_hysteresekurven. PNG, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16154290









### **Transmission Line** A different take

- A kind of transformer
  - but rather different
- Doesn't use flux linkage
  - uses transmission line characteristics
- Wavelength dependent
- Confusing terminology again
  - TLT is balun / unun?







### Single winding SWR Meter

- Just need one loop to get flux
- Like the 'current transformer'
  - but for RF
- A winding is a winding
  - as long as it passes through the center
- Voltage set with turns ratio







#### Wireless Power Transfer

- All the rage right now
- Inefficient
  - why?
  - flux leakage
  - ohmic losses
- Qi hunts for best coupling freq
  - looks for resonance









### What have we learned?

- Transformers are interesting
  - understood with Maxwell
- Transformers are fun
  - you can transform V, I, Z
- Transformers are fair
  - energy is conserved
- Transformers are useful
  - they're everywhere in electronics







# Questions?

